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Abstract: Polarization imaging, which provides multidimensional information beyond tradi-
tional intensity imaging, has prominent advantages for complex imaging tasks, particularly in
scattering environments. By introducing deep learning (DL) into computational imaging and
sensing, polarization scattering imaging (PSI) has obtained impressive progresses, however,
it remains a challenging but long-standing puzzle due to the fact that scattering medium can
result in significant degradation of the object information. Herein, we explore the relationship
between multiple polarization feature learning strategy and the PSI performances, and propose a
new multi-polarization driven multi-pipeline (MPDMP) framework to extract rich hierarchical
representations from multiple independent polarization feature maps. Based on the MPDMP
framework, we introduce a well-designed three-stage multi-pipeline networks (TSMPN) architec-
ture to achieve the PSI, named TSMPN-PSI. The proposed TSMPN-PSI comprises three stages:
pre-processing polarization image for de-speckling, multiple polarization feature learning, and
target information reconstruction. Furthermore, we establish a real-world polarization scattering
imaging system under active light illumination to acquire a dataset of real-life scenarios for
training the model. Both qualitative and quantitative experimental results show that the proposed
TSMPN-PSI achieves higher generalization performance than other methods on three testing
data sets refer to imaging distances, target structures, and target materials and their background
materials. We believe that our work presents a new framework for the PSI and paves the way to
its pragmatic applications.
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1. Introduction

Accomplishing high-quality imaging in scattering environments is a long-standing optical
imaging problem of great importance. It plays a vital role in a wide range of applications across
various domains including but not limited to remote sensing observation, medical imaging, and
autonomous driving [1–4]. However, optical scattering imaging is susceptible to interference
from various types of scattering media, such as fog [5], haze [6–8], biological tissues [9], and
turbid water [10,11]. Specifically, when light carrying target information passes through a
scattering medium, the target information will be seriously degraded by the medium, leading
to poor imaging quality [12]. Tremendous efforts in optical theories and experiments, such as
wavefront shaping [13], transmission matrices [14], optical coherence tomography [15], and
correlated imaging [16–19], have been made to reconstruct target information in scattering media.
Nevertheless, the optical methods possess inherent limitations, such as being time-consuming,
labor-intensive, and expensive. Facing the significance of optical scattering imaging and the
difficultly in experimentally reconstructing target signal, it is highly desired to develop an
automated and cost-effective computational approach for achieving high-performance imaging in
scattering environments.
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In recent years, the significance of polarization imaging has been increasingly recognized by
many researchers [20–24]. Unlike traditional intensity imaging methods, polarization imaging
not only provides the distribution of light intensity in a scene, but also the distribution of
polarization feature, such as the angle of polarization (AoP) and degree of polarization (DoP).
By leveraging the multi-dimensional characteristics of the polarization information, several
computational imaging methods aided by polarization-information have emerged for solving
target reconstruction in scattering media. The current polarization scattering imaging (PSI)
methods can be roughly classified into two categories: (i) physical model-based methods and (ii)
deep learning (DL)-based methods. Physical model-based methods lead the trend in the field of
PSI at the early stage. These methods including dark channel prior (DCP) [7], maximum intensity
prior (MIP) [25], inverse imaging with the underwater image formation model (IFM) [26], and
polarization difference imaging (PDI) [10], mainly rely on hand-crafted statistics and knowledge
of the physical characteristics of the scene to obtain a suitable solution for target information
recovery. For example, Liu et al. [27] use the DCP algorithm and logarithmic transformation
to restore polarization-based underwater image; Zhao et al. [28] employ genetic algorithm to
scan the degree of linear polarization (DoLP) image of the target light and the backscattered
light to obtain the target light images with the highest contrast. It is undeniable that the physical
model-based methods enable a well-informed interpretation of the intrinsic physical mechanisms
of imaging through scattering medium. Nevertheless, physical model-based PSI methods have a
common drawback: they generally are based on idealized conditions, which seriously restricts
their applicability.

To overcome the defects of physical model-based PSI methods, a range of DL-based methods
have been proposed for the PSI, e.g., Polarimetric-Net [29], AOD-Net [30], IPLNet [31], PDRDN
[32], PFNet [33], U2R-pGAN [34], MU-DLU [22], and attention-based residual neural network
[35]. Generally, these methods for polarization image reconstruction involve three primary steps:
dataset construction, feature representation, and model design and optimization. For instance,
Polarimetric-Net employs a commercial division of focal plane (DoFP) polarization camera to
take the polarization images of specific scenes. Subsequently, these images are spilt into four
polarized images with polarization directions of 0◦ (I0◦ (x, y)), 45◦ (I45◦ (x, y)), 90◦ (I90◦ (x, y)),
and 135◦ (I135◦ (x, y)) including the linear polarization information. Finally, three polarized
images, i.e., I0◦ (x, y), I45◦ (x, y), and I90◦ (x, y), are serially merged as one feature source to feed
into a polarization dense network for underwater image restoration. Similar to Polarimetric-Net,
PDRDN also uses the DoFP polarization camera to generate four polarized images and enters
them into a residual dense network for denoising. In contrast to the aforementioned DL-based
methods, MU-DLU utilizes a Monte Carlo algorithm to establish an optical simulation platform
that models the actual atmospheric scattering environment and collects a synthetic polarization
dataset. The Q-component of the Stokes vector is then coupled with a modified U-net to retrieve
the target information influenced by the scattering media.

These methods have demonstrated significant advancements in addressing the problem of
polarization image reconstruction. Nevertheless, we notice there is still room for further
improvement in the performance of existing methods by addressing their potential defects. To be
specific, most of existing PSI methods use either one single-view polarization feature map or
blindly concatenate multiple single-view polarization feature maps directly as inputs to the DL
algorithms, which fails to mine sufficient discriminative information effectively. Furthermore,
although the usage of fused multi-view features can represent the polarization information, in
most of the cases it contains overlapping information that will seriously reduce the efficiency of
PSI model. On the other hand, facing the complicated natural scattering environment, designing
an effective DL framework is also a major challenge for researchers.

To tackle the aforementioned critical issues, we herein explore the optimization of effective
multiple polarization feature learning for maximizing the usage of the network capability, and



Research Article Vol. 31, No. 23 / 6 Nov 2023 / Optics Express 38099

propose a well-designed three-stage multi-pipeline networks (TSMPN) architecture for the PSI,
named as TSMPN-PSI. The novelties of our work compared with previous PSI frameworks can
be briefly summarized as follows:

1) We present a new DL-based method, called TSMPN-PSI, established in a systematic
TSMPN architecture, to further improve the reconstruction performance of polarization
images, which is comprising three parts, namely pre-processing of de-speckling polarization
images, multiple polarization feature learning, and a down-stream structure with cascaded
network branches for image reconstruction.

2) A new multi-polarization-driven multi-pipeline (MPDMP) framework is designed, which
effectively acquiring targets’ multi-polarization information. The MPDMP framework
contains five sub-pipelines that undertake different tasks. Furthermore, we design a novel
multi-tiered recurrent de-speckling module (MTRDS), to suppress the potential noise in
polarized scattering images.

3) We construct one benchmark scattering image dataset under active light illumination con-
ditions, including a wider range of real-world scenarios, such as varying imaging distances
through scattering media, diverse target structures and materials, and their corresponding
background materials. This dataset will facilitate the further PSI development.

4) We validate the efficacy of TSMPN-PSI through extensive experiments on challenging real-
world image datasets. The benchmarking results demonstrate that our proposed TSMPN-PSI
significantly outperforms several existing state-of-the-art approaches, delivering more
robust performance.

2. Methodology

The proposed TSMPN-PSI is composed of three stages: de-speckling polarization image,
multi-polarization feature learning, and image reconstruction. The flowchart is illustrated in
Fig. 1.

Fig. 1. Flowchart of the proposed TSMPN-PSI.

2.1. Theoretical background

As a higher-dimension information, the Stokes vector is more suitable for characterizing the
polarization properties of natural light [12]. Polarized light or non-polarized light can be
represented by the Stokes vector S = [I(x, y), Q(x, y), U(x, y), V(x, y)]T , where I(x, y) denotes
the total light intensity, Q(x, y), U(x, y), and V(x, y) are the light intensity difference between
different orthogonal polarization states. For example, Q(x, y) refers to the light intensity
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difference between 0◦ and 90◦ polarization directions [36]. In general, circularly polarized light
is rarely available in the natural environment in visible band, so V(x, y) component is ignored in
this work. In practice, the first three components of the Stokes parameters can be obtained by
measuring the intensities of light along four different directions. More specifically, researchers
use the DoFP to measure the intensities of light along four directions of 0◦, 45◦, 90◦, and 135◦
in the same scene, which are denoted as I0◦ (x, y), I45◦ (x, y), I90◦ (x, y) , I135◦ (x, y) respectively.
The first three components in the Stokes parameters and the degree of linear polarization (DoLP)
can be respectively calculated as:

I(x, y) = I0◦ (x, y) + I90◦ (x, y)

Q(x, y) = I0◦ (x, y) − I90◦ (x, y)

U(x, y) = I45◦ (x, y) − I135◦ (x, y)

(1)

DoLP =
√︂

Q(x, y)2 + U(x, y)2/I(x, y) (2)

In a scattering environment, natural light traveling through a scattering medium and interacting
with it ordinarily brings about an alteration in the polarization characteristics of the reflected
or transmitted light. Now, we assume that the Stokes vector of the incident light is J(x, y), the
Stokes vector of the outgoing light after interacting with the medium is J∗(x, y), and the Muller
matrix (MM) [37] can formulate their relationship as follows:

J∗(x, y) = MM · J(x, y) (3)

This process makes the detector receive object information containing a large number of
speckles, which will affect the imaging quality. Meanwhile, the quality of scattering imaging
deteriorates as the concentration of the scattering medium becomes larger or the imaging distance
becomes longer. It is more challenging that the detector can’t effectively distinguish the target
in background, when the target and its background have similar polarization characteristics.
In this work, we regard the reconstruction of the object image as an inverse imaging problem
computationally, and the process can be formulated as the following objective function:

J(x, y) = MM−1 · J∗(x, y) (4)

where MM−1 is the inverse of MM. DL has proven to be an effective resolution to the inverse
imaging problem. Therefore, DL is incorporated with the polarization physical priors to learn
the statistical distribution of polarization information in an effort to achieve the mapping of
low-quality primary scattered images to high-quality restored image in this work.

2.2. Measurement system

Some existing DL-based methods have achieved considerable progresses in reconstructing
polarization images on synthetic dataset, but there is dissimilarity in polarization characteristics
between the synthetic and the real-word polarization image, which seriously restricts the
development of polarization scattering imaging. Hence, we establish a real-world polarization
scattering imaging system under active light illumination to collect a real-life scenarios dataset
to directly verify the effectiveness of polarization image recovery methods. The schematic
diagram of the experimental setup is illustrated in Fig. 2(a). ‘Dis’ denotes the distance between
the scattering medium and the objects. A linear polarizer is employed as the polarization state
generator to provide polarized illumination S = (1, 1, 0, 0)T in front of an LED light source.
The ground glass is utilized as the scattering medium device. The light is focused by means of a
convex lens. We use DoFP polarization camera (LUCID, PHX055S-PC) to take simultaneously
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four polarized images with polarization directions of 0◦, 45◦, 90◦, and 135◦, called I0◦ (x, y),
I45◦ (x, y), I90◦ (x, y), and I135◦ (x, y), respectively. Taking hand-written digits written in ink on
the white paper as an example, Fig. 2(b) shows separately the I0◦ (x, y), I45◦ (x, y), I90◦ (x, y),
I135◦ (x, y), DoLP, and the ground truth respectively.

Fig. 2. (a) Experimental setup for the PSI through scattering medium, (b) the I0◦ (x, y),
I45◦ (x, y), I90◦ (x, y), I135◦ (x, y), DoLP, and the ground truth.

2.3. Three-stage multi-pipeline networks (TSMPN) architecture

With increasing popularity of DL techniques in computational imaging domains, DL techniques
have shown superior results over traditional methods across a wide variety of tasks [38,39],
particularly in imaging through scattering media. In this work, leveraging the power of the
Convolutional Long Short-Term Memory (ConvLSTM) [40] module, the multi-scale residual
structure (Res2Net) [41], and the Atrous Spatial Pyramid Pooling (ASPP) [42] module, we
design and implement our proposed TSMPN-PSI pipeline based on one newly designed MTRDS
module and one novel designed MPDMP framework.

1) MTRDS module: A pre-requisite for developing powerful computational models to
reconstruct polarization image is the suppression of noise and irrelevant information
in the initial feature source. Hence, our designed MTRDS module attempts to record
speckle degradations via convolutional sequence-to-sequence process, which can guide the
subsequent network to focus on the potential target regions [43]. The whole structure of
our MTRDS module is shown in Fig. 3. To be specific, the proposed MTRDS module
includes six iterations, each of which is consisting of an initial convolutional layer followed
by a ConvLSTM layer, eight Res2Net blocks, and a convolutional layer in the end.

2) Res2Net: Different from common ResNet block [44], the recently proposed network
architecture Res2Net is designed to obtain multi-scale features more efficiently. As
illustrated in Fig. 3(B), in Res2Net, the feature maps denoted by x first are input into a
1× 1 convolutional layer. Then the transformed feature maps are split into several subsets
(i.e., x1, x2, x3, and x4) in channel accordingly, followed by different operations. Finally,
multi-scale features are fed into another 1× 1 convolutional layer after merging, and are
summed with x as the output y.

3) ConvLSTM: Inspired by the ConvLSTM superior ability to learn context-dependent
information, we utilize it to capture relevant information relating to target of interest. The
ConvLSTM mainly contains three basic gates, i.e., an input gate, a forget gate, and an
output gate. The forget gate determines which information should be discarded from the
cell state while updating; meanwhile, the input gate decides what new data can be stored in
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the cell state, and the output gate decides what information can be output based on the cell
state [45].

4) MPDMP framework: the extraction of effective polarization features is considered the
most important step in developing accurate computational methods for retrieving target
information. Hereby, a customized MPDMP framework, which is composed of multiple
polarization feature learning and image reconstructing stages, is designed to extract the
discriminative information from four single-view feature maps to reconstruct polarization
image. As shown in Fig. 4, the MPDMP consists of five sub-pipelines named Pipes I,
II, III, IV, and V. In the multiple polarization feature learning stage, the sub-pipelines
I, II, III, and IV corresponding to input feature maps I0◦ (x, y), I45◦ (x, y), I90◦ (x, y), and
DoLP, respectively, are set the same network’s hyper-parameters, including a Block a (i.e.,
an initial convolutional layer), Block c repeated five times, and a Block d. Taking the
process of extracting discriminative features of I0◦ (x, y) from Pipe I as an illustration, the
feature map I0◦ (x, y) is first entered an initial convolutional layer, which is transformed
into a spatial vector. Subsequently, the transformed feature maps are fed into five Block
c of various depths (i.e., N1, N2, N3, N4, and N5) to make the extraction and fusion of
multi-dimensional features throughout the forwarding propagation. Here, each Block c
consists of x Block b (i.e., residual network) and a max pooling layer. Finally, a Block d,
i.e., ASPP, utilizes multiple parallel filters to generate multi-scale feature from the output
of the last Block c and fuses them [42]. At the stage of image reconstructing, Pipe V is
designed to integrate the diverse levels of feature information mined in the first stage, which
consists of five Block e. The detailed structure of the Block e is illustrated in Fig. 4. To be
concrete, in Block e, a calibrator adjusts the number of channels and size of two adjacent
features before fusing two feature maps. The fused maps are then processed through a
bilinear up-sampling module, and followed by a 3× 3 convolutional layer. Finally, they are
fed into a 1× 1 convolutional layer to adjust the output feature map’s channel count to the
specified value. It should be noted that after each convolutional layer, batch normalization
and Relu activation functions are employed. A dropout strategy with a ratio of d% is
utilized to avoid overfitting.

Fig. 3. (A) Block diagram of the network architecture of MTRDS module. (B) The structure
of Res2Net module.
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Fig. 4. The network layout of the MPDMP framework. It consists of multiple polarization
feature learning stages (i.e., Pipe I, Pipe II, Pipe III, and Pipe IV) and image reconstructing
stage (i.e., Pipe V). ‘Norm.’ denotes the batch normalization layer, ‘Act.’ denotes the linear
rectification activation function (Relu), and ‘Drop.’ denotes the dropout ratio.

2.4. Training details and evaluation metrics

We perform all experiments on Linux Server (Ubuntu 20.04) Intel Core i7-7700 CPU @3.6 Hz
32.0GB of RAM, and Python 3.7 programming. TSMPN architecture, which is implemented
using PyTorch software (Version 1.7.1), is trained on one graphics processing unit (Nvidia
GeForce RTX 3090) to speed up training. In the model training process, we use the mean squared
error (MSE) function to calculate the loss and optimize the model by the Adam algorithm with
a learning rate of lr and a batch size of bs. We use the strategy of grid search and adjust the
network’s hyper-parameters, i.e., N1, N2, N3, N4, N5, d, lr, and bs, by observing the model
performance on the training dataset (see “Data Acquisition” section for details) over five-fold
cross-validation tests. Lastly, according to the best/sub-best performance of TSMPN model, we
use the following values for the above hyper-parameters: N1=3, N2 = 6, N3 = 8, N4 = 10, N5 =5,
d= 25%, lr= 0.0001, and bs= 15.

We employ four evaluation metrics, i.e., Structural Similarity Index Measure (SSIM), Pearson
Correlation Coefficient (PCC), MSE, and Peak Signal-to-Noise Ratio (PSNR), to evaluate the
quality of image recovery. SSIM is utilized to evaluate the structure and texture between the
reconstructed and real images, and a higher SSIM value reflects a more similar structure and
texture. PCC is employed to quantify the relationship between the reconstructed and real
pixel-level values of each image, and its value is between -1 and 1, whereas MSE is applied
to quantitatively measure the average deviation between the reconstructed and ground truth
pixel-level values of each image. Furthermore, we also use PSNR to quantify the content between
the reconstructed and ground truth images, and a higher PSNR value represents closer image
content.
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3. Results and discussions

3.1. Data acquisition

Training data set. In this work, based on our established PSI system under active light
illumination (refer to the section ‘Experimental Setup’), we collect 200 samples of polarization
scattering images as the training data set to infer the parameters of our proposed TSMPN-PSI.
Specifically, firstly, we employed a linear polarizer as the polarization state generator to provide
polarized illumination S = (1, 1, 0, 0)T in front of an LED light source. Meanwhile, we
put the object of interest away from the DoFP polarization camera to generate ground truth
images. Then, we place the scattering medium device (i.e., ground glass) at a distance of 40 mm
from the object and use the DoFP polarization camera to generate scattered images containing
polarization information as preliminary feature source. Finally, based on scattered images of
different directions, we use Eq. (1) and 2 to calculate the Stokes vector and DoLP accordingly.
It should be noted that each polarization scattered image in the training data set is imaged at a
distance of 40 mm, and its target is simply hand-written digit written in ink on white paper. In
addition, in the training phase, the Scikit-image [46] python library is employed to enhance the
training data set by rotating and flipping the existing images, and all images are adjusted to a
fixed size, i.e., 256×256.

Testing data set. We evaluate the performance of the proposed method on three independent
testing data sets. In contrast to the previous method, the targets in our testing data sets are
completely invisible to observation, and include more abundant real-life scenarios. More
specifically, the testing data sets are divided into three groups, i.e., Groups I, II, and III. Group I,
for characterizing the generalization capability of the proposed method concerning the untrained
targets with different structures, we collect 24 pairs of images having the same imaging distance
(i.e.,40 mm) as the training data set, which contain untrained hand-written digits, hand-written
alphabets, and hand-written graphic patterns, written in ink on the white paper. Group II, to
further characterize the generalization capability of our proposed method in term of imaging
distance, we generate 50 pairs of images at distances of 35 mm, 40 mm, 42.5 mm, 45 mm, and
50 mm between ground glass and the targets, whose target structures and background materials
same as Group I. Group III, to characterize the generalization capability of the proposed method
concerning the untrained object and background materials, we produce 18 pairs of images having
the same imaging distance as Group I, which consist of three classifications, i.e., Paper-Steel,
Wood-Ink, and Wood-Steel, where Paper-Steel, Wood-Ink, and Wood-Steel denote digits (or
alphabets) made of steel against paper background, digits (or alphabets) written in ink against
wood, and digits (or alphabets) made of steel against wood background, respectively.

3.2. Performance of multi-pipeline learning strategy

To demonstrate that our proposed multi-pipeline learning framework (MPLF) (introduced in the
“Three-Stage Multi-Pipeline Networks Architecture” section) can extract more discriminative
information from the four stand-alone single-view feature maps, i.e., I0◦ (x, y), I45◦ (x, y), I90◦ (x, y),
and DoLP, we compare the performances between the proposed MPLF and single-pipeline
learning framework (abbreviated as SPLF). Unlike MPLF framework, we integrate MTRDS
module, Pipe I, and Pipe V to build SPLF, and employ the fusion feature maps of the above-
mentioned four single-view feature maps as feature source. Specifically, for each framework,
we use it to train a model on the training data set with the optimal or sub-optimal parameters
selected in cross-validation and validate the performance of the trained model on the untrained
targets with different structures, i.e., Group I testing data set. Some cases in Group I testing data
set are randomly selected for performance analysis, and the results are displayed in Fig. 5.

As can be seen from Fig. 5, in terms of both the detail and structural integrity of the recovered
images, proposed MPLF strategy consistently outperforms the SPLF. Further, Table 1 also lists
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Fig. 5. Visual performance comparison between MPLF and SPLF frameworks on the
untrained targets with different structures. (a) Ground truth. (b) Scattering images
with polarization directions of 0°. (c) Reconstructed images by SPLF framework. (d)
Reconstructed images by MPLF framework.

the average SSIM, PCC, MSE, and PSNR values of reconstructed images by the MPLF and
SPLF in Fig. 5, in which it is easy to see that the MPLF outperforms SPLF concerning the
four evaluation indexes. Concretely, the SSIM, PCC, MSE, and PSNR values of MPLF are
0.75, 0.81, 0.043, and 13.97, which are 4.17%, 6.58%, 23.21%, and 8.38% higher than those
of SPLF respectively. The above comparison results demonstrate that the MPLF could extract
more discriminative information from multi-view feature maps to enhance the polarization image
recovery performance. That is to say, MPLF is able to get useful complementary information
from multiple independent polarization feature maps, which helps in reconstruction of target
information.

Table 1. Performance comparison between MPLF and SPLF on the untrained targets
with different structures.

Model SSIM PCC MSE PSNR

SPLF 0.72 0.76 0.056 12.89

MPLF 0.75 0.81 0.043 13.97

3.3. Performance comparison with existing methods

In this section, to evaluate the performance of our proposed TSMPN-PSI, we will experimentally
compare it with several state-of-the-art methods, including DCP [7], Polarimetric-Net [29],
MU-DLU [22], and our implementation version of UNet-DoLP [20] that trains the U-Net with
solely DoLP feature map. In four methods, the former one, i.e., DCP, is physical model-based
methods, while the other three, i.e., Polarimetric-Net, MU-DLU, and UNet-DoLP, are DL-based
methods. For an objective and fair comparison, except for DCP method, the remaining methods
are respectively trained on the same training data set and evaluated on the same independent
testing data sets.

1) Performance Comparison on Targets with Different Geometries: The purpose of the sub-
section is to experimentally demonstrate the efficacy of the proposed TSMPN-PSI by
comparing it with four state-of-the-art methods mentioned above on the untrained targets
with different structures i.e., the Group I testing data set. The results of two untrained
handwritten digit testing targets, two untrained handwritten alphabet testing targets, and
two untrained handwritten graphic pattern testing targets are illustrated in Fig. 6 and
Table 2 to intuitively compare the performance by TSMPN-PSI and other methods. By
observing Fig. 6 and Table 2, it is easy to find that TSMPN-PSI is consistently superior to
four methods with regard to SSIM, PCC, PSNR, and MSE evaluation indexes. Compared
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with UNet-DoLP, the second-best method among all methods, the values of SSIM, PCC,
PSNR, and MSE of TSMPN-PSI are enhanced by 3.75%, 13.16%, 37.50% and 12.27% on
Fig. 6 (a) sample, respectively. As expecting, the DCP method, which is developed based
on physical model, gains the lowest reconstruction performance in terms of four evaluation
indexes.

Fig. 6. Visual performance comparison between TSMPN-PSI and other methods on the
untrained targets with different structures. (a), (b), (c), (d), (e), and (f ) are untrained
handwritten digits, handwritten alphabets, and handwritten graphic patterns, written in ink
on the white paper.

Figure 7 illustrates the head-to-head comparisons between TSMPN-PSI and other methods
on the Group I testing data set, which contains 8 untrained handwritten digit testing targets,
8 untrained handwritten alphabet testing targets, and 8 untrained handwritten graphic pattern
testing targets. From Fig. 7, it is clear that the performance of TSMPN-PSI is superior to that of
the other methods in terms of the numbers of higher SSIM, PCC, PSNR, and MSE. For instance,
out of the 24 targets, there 24, 24, 24, and 19 cases where TSMPN-PSI has better SSIM values
than DCP, Polarimetric-Net, MU-DLU, and UNet-DoLP, respectively.
2) Performance Comparison on Targets with Different Imaging Distances: To further examine

the effectiveness of proposed TSMPN-PSI, we compare it with DCP, Polarimetric-Net,
MU-DLU, and UNet-DoLP on the dependent testing data set Group II, i.e., the untrained
targets with different imaging distances. Five samples, which are selected from the Group
II, are used for detailed visual comparison between TSMPN-PSI and other methods.
Figure 8 and Table 3 show that the TSMPN-PSI’s generalization performance about
imaging distances is significantly superior to those of the other four methods. Specifically,
the SSIM, PCC, PSNR, and MSE of TSMPN-PSI on Fig. 8 (b) sample are 15.49%,
116.67%, 76.00%, and 68.36% higher, respectively, than the corresponding values yielded
by Polarimetric-Net that is the recently reported DL-based multi-polarization feature
learning methods. Furthermore, by carefully observing Fig. 8 and Table 3, the following
three phenomena can be seen: (1) The generalization capability of TSMPN-PSI at Dis= 40
mm outperforms those at Dis= 35 mm, Dis= 42.5 mm, Dis= 45 mm, and Dis= 50 mm
with respect to four evaluation indexes. (2) It is straightforward to find that the image
recovered by the TSMPN-PSI have well structural integrity, when Dis≤42.5 mm. While
Dis>42.5 mm, although the performance of the TSMPN-PSI drops slowly in recovering
image details, the background and target of the reconstructed image can be effectively
distinguished. (3) It has not escaped from our notice that for the case at Dis= 50 mm, the
imaging distance’s generalization reaches to 25%, and the target can be also distinguished,
which can be an index for demonstrating excellence of our proposed TSMPN-PSI.
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Table 2. Performance comparison between TSMPN-PSI and other methods on the untrained
targets with different structures.

Images Metrics DCP Polarimetric-Net MU-DLU UNet-DoLP TSMPN-PSI

(a)

SSIM 0.37 0.74 0.78 0.80 0.83
PCC 0.35 0.42 0.75 0.76 0.86
MSE 0.84 0.089 0.034 0.032 0.02
PSNR 5.45 10.74 15.2 15.48 17.38

(b)

SSIM 0.39 0.74 0.78 0.76 0.83
PCC 0.28 0.34 0.70 0.71 0.88
MSE 0.91 0.098 0.045 0.049 0.024
PSNR 5.11 10.38 13.68 13.71 16.33

(c)

SSIM 0.35 0.70 0.72 0.72 0.79
PCC 0.34 0.41 0.56 0.70 0.85
MSE 0.99 0.11 0.066 0.049 0.028
PSNR 4.73 9.91 12.44 13.71 15.77

(d)

SSIM 0.35 0.71 0.75 0.77 0.77
PCC 0.23 0.30 0.74 0.77 0.81
MSE 0.99 0.11 0.045 0.037 0.037
PSNR 4.79 10.33 13.09 14.79 14.41

(e)

SSIM 0.28 0.64 0.66 0.70 0.73
PCC 0.29 0.39 0.62 0.72 0.77
MSE 0.99 0.11 0.0712 0.057 0.051
PSNR 4.77 9.80 12.17 13.23 13.36

(f )

SSIM 0.31 0.62 0.67 0.69 0.71
PCC 0.25 0.38 0.74 0.76 0.81
MSE 0.90 0.12 0.061 0.058 0.045
PSNR 5.23 9.75 13.11 13.42 13.92

In addition, Fig. 9(a), (b), (c), and (d) display the distribution of SSIM, PCC, PSNR, and MSE
values among individual sample in terms of median, 25th, and 75th percentile for all methods
on Group II, respectively. The results shown in Fig. 9 clearly demonstrate that TSMPN-PSI
outperforms the other methods concerning the median, 25th, and 75th percentile of SSIM, PCC,
PSNR, and MSE values. Taking the distribution of PCC as an example, TSMPN-PSI achieves
the highest median PCC with the least spread around the median values as compared to other
methods. This shows the stable performance of TSMPN-PSI in comparison to other methods.

3) Performance Comparison on Target with Different Materials: The structural properties and the
constituents of the target’s material considerably influence the polarization characteristics
of the image signal. In this sub-section, to further highlight the generalization capability
of our proposed method, we compare it with DCP, Polarimetric-Net, MU-DLU, and
UNet-DoLP by independent validation on Group III testing data set, i.e., the untrained
object and background materials. Figures 10 and 11 and Table 4 summarize the compared
results.

As demonstrated in Fig. 10 and Table 4, the proposed TSMPN-PSI achieves satisfactory
results. Although the existing methods gain a reasonable SSIM of 0.12∼0.72 on six cases, the
improvement of TSMPN-PSI is also significant. Using the results of Fig. 10(d) (i.e., Wood-Ink)
as an example, the SSIM and PSNR, which are two overall measurements of the quality of the
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Fig. 7. Head-to-head comparison of SSIM, PCC, PSNR, and MSE between TSMPN-PSI
and other methods on the Group I testing data set. Each purple, green, and red circle mean
untrained targets of handwritten digits, handwritten alphabets, and handwritten graphic
patterns, respectively, written in ink on the white paper. The numbers in each panel represent
the number of points in the upper and lower triangles, respectively.

Fig. 8. Visual comparison between TSMPN-PSI and other methods on the untrained targets
with different imaging distances. (a) Dis= 35 mm. (b) Dis= 40 mm. (c) Dis= 42.5 mm. (d)
Dis= 45 mm. (e) Dis= 50 mm.
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Table 3. Performance comparison between TSMPN-PSI and other methods on the untrained
targets with different imaging distances.

Images Metrics DCP Polarimetric-Net MU-DLU UNet-DoLP TSMPN-PSI

Dis= 35mm

SSIM 0.37 0.70 0.75 0.78 0.81
PCC 0.34 0.43 0.74 0.74 0.82
MSE 0.90 0.10 0.041 0.037 0.034
PSNR 5.14 10.18 14.45 14.26 14.73

Dis= 40mm

SSIM 0.26 0.71 0.75 0.78 0.82
PCC 0.32 0.42 0.71 0.72 0.91
MSE 1.16 0.10 0.044 0.04 0.024
PSNR 4.06 10.02 14.08 14.66 16.87

Dis= 42.5mm

SSIM 0.35 0.7 0.75 0.75 0.79
PCC 0.30 0.37 0.69 0.66 0.78
MSE 0.912 0.10 0.045 0.049 0.04
PSNR 5.12 10.41 13.36 13.71 14.21

Dis= 45mm

SSIM 0.30 0.71 0.74 0.75 0.79
PCC 0.29 0.32 0.68 0.71 0.79
MSE 1.13 0.098 0.045 0.042 0.034
PSNR 4.15 10.47 13.96 14.24 15.1

Dis= 50mm

SSIM 0.32 0.70 0.73 0.74 0.76
PCC 0.26 0.28 0.71 0.66 0.60
MSE 0.99 0.099 0.043 0.05 0.065
PSNR 4.70 10.43 14.25 13.46 12.29

Fig. 9. Boxplot of SSIM, PCC, PSNR, and MSE for TSMPN-PSI and other methods on
different imaging distances. On each box, the square and horizontal represent the mean
and median, and the bottom and top edges of the box indicate the 25th and 75th percentiles,
respectively. the outliers are plotted individually using the diamond with filled color.
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Fig. 10. Visual performance comparison between TSMPN-PSI and other methods on the
untrained target and background materials. (a) and (b) are digits (or alphabets) made of steel
against paper background, i.e., Paper-Steel. (c) and (d) are digits (or alphabets) written in
ink against wood, i.e., Wood-Ink. (e) and (f ) are digits (or alphabets) made of steel against
wood background, i.e., Wood-Steel.

Fig. 11. Head-to-head comparison of SSIM, PCC, PSNR, and MSE between TSMPN-PSI
and other methods on the Group III testing data set. Each purple, green, and red circle mean
Wood-Ink, Wood-Steel, and Paper-Steel, respectively. The numbers in each panel represent
the number of points in the upper and lower triangles, respectively.
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Table 4. Performance comparison between TSMPN-PSI and other methods on the untrained target
and background materials.

Images Metrics DCP Polarimetric-Net MU-DLU UNet-DoLP TSMPN-PSI

(a)

SSIM 0.36 0.57 0.61 0.61 0.60

PCC 0.27 0.20 0.049 0.055 0.15

MSE 0.67 0.20 0.13 0.11 0.098
PSNR 6.44 6.93 8.98 9.65 10.05

(b)

SSIM 0.42 0.50 0.53 0.55 0.59
PCC -0.031 0.45 -0.13 0.24 0.33

MSE 0.59 0.21 0.17 0.11 0.091
PSNR 7.08 6.60 7.56 9.48 10.35

(c)

SSIM 0.12 0.67 0.72 0.72 0.73
PCC 0.35 0.38 0.62 0.64 0.75
MSE 0.82 0.073 0.032 0.033 0.023

PSNR 5.48 11.41 15.36 15.26 16.47

(d)

SSIM 0.096 0.62 0.61 0.62 0.66
PCC 0.42 0.36 0.56 0.49 0.64
MSE 0.96 0.064 0.059 0.059 0.043
PSNR 4.78 12.27 12.41 12.88 14.19

(e)

SSIM 0.15 0.51 0.53 0.52 0.53
PCC 0.52 0.24 -0.20 -0.20 0.21

MSE 0.81 0.15 0.13 0.12 0.072
PSNR 5.62 8.04 8.93 9.11 11.38

(f )

SSIM 0.15 0.54 0.53 0.57 0.54

PCC 0.32 0.47 -0.068 0.033 0.38

MSE 0.91 0.10 0.13 0.09 0.089
PSNR 5.09 9.84 9.03 10.40 10.41

image reconstruction, are 0.66 and 14.19 respectively for the TSMPN-PSI, which are 587.50%
and 196.86%, 6.45% and 15.65%, 8.20% and 14.34%, and 6.45% and 10.17% higher than those
of DCP, Polarimetric-Net, MU-DLU, and UNet-DoLP, respectively. By observing Fig. 10, it
is noteworthy that although four compared methods obtain good performance in terms of four
evaluation metrics, the images they restored are extremely blurred and the targets are difficult to
distinguish. Figure 11 also shows that the performance of TSMPN-PSI is superior to that of the
other methods with respect to the numbers of higher SSIM, PCC, PSNR, and MSE, except for
when compared to the PCC of Polarimetric-Net.

4. Conclusion

In this work, a new MPDMP framework is designed to effectively learn rich hierarchical
representations from multiple polarization feature maps. Using the proposed MPDMP, a
robust DL method is developed for polarization image reconstruction, called TSMPN-PSI. By
comparison with several state-of-the-art methods on three real-life testing data sets, the efficacy
of the proposed method has been demonstrated and verified. The excellent performance of
TSMPN-PSI is mainly attributed to the strong capability of MPDMP for effectively dealing with
the physical representation between the object intensity and its polarization information.
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Although our work achieves some improvements in PSI, there is still room to further enhance
its performance due to the following three points. First, it may be a promising approach to further
improve the performance of TSMPN-PSI by incorporating more information with heterogeneous
features that are complementary to the currently used encoding features. Second, the inner
workings of the DL model are a black box to us, and we can obtain more if we can understand
the underlying workings. Third, the performance of DL-based computational imaging methods
is optimal for high-contrast targets, but these methods are likely to encounter limitations when
applied to complex scenes. The integration of physics and artificial intelligence could potentially
offer a solution to the problem. On the other hand, the utilization of circularly polarized light
may also be an important solution, but its data acquisition is a problem. Lastly, the generalization
performance of TSMPN-PSI for underwater PSI is not yet known. Hence, we will investigate the
applicability of TSMPN-PSI to underwater imaging in future. In the subsequent works, we will
propose targeted strategies to counter the above issues.
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